Effect of Marine Atmosphere on the Ablation Performance of a Certain Ablation-resistant Coating and Carbon Fiber Laminate and Its Degradation Model

YU Qian, WANG Yalan, JIANG Zeyong, WANG Yu

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 97-103.

PDF(975 KB)
PDF(975 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 97-103. DOI: 10.7643/ issn.1672-9242.2025.11.010
Ships and Marine Engineering Equipment

Effect of Marine Atmosphere on the Ablation Performance of a Certain Ablation-resistant Coating and Carbon Fiber Laminate and Its Degradation Model

  • YU Qian, WANG Yalan, JIANG Zeyong, WANG Yu
Author information +
History +

Abstract

The work aims to study the effect of marine atmospheric environment on the ablation performance of a certain ablation-resistant coating and carbon fiber laminate, and to establish a degradation model. Laboratory accelerated tests under simulated marine atmospheric environment and non-salt spray environment were conducted on the ablation-resistant coating and carbon fiber laminate. The linear ablation rate and mass ablation rate of the test pieces after the accelerated tests were measured. The results of the two sets of tests were compared to clarify the impact of salt spray environment on the performance degradation of the composite material. At the same time, the results of the test pieces stored naturally were compared to verify the consistency of the degradation law and establish a performance degradation model.In the laboratory accelerated test under simulated marine atmospheric environment, it showed that the marine environment had a significant impact on the ablation performance of the material. The degradation laws of the linear ablation rate and mass ablation rate were analyzed. Based on the grey system theory, a degradation model of the ablation performance of the ablation-resistant coating and carbon fiber laminate under marine atmospheric environment was established, and the model was verified and corrected. The average relative error of the predicted value after correction was 5.66%. In laboratory accelerated tests under simulated the marine atmospheric environment, the ablation performance of the ablation-resistant coating and carbon fiber laminate decreases significantly. Through the processing and analysis of the experimental data, the degradation model based on the grey system theory can well reflect the degradation of the ablation performance of the material in the marine atmospheric environment, and the predicted value of the model has high accuracy.

Key words

marine atmosphere / salt spray accelerated test / ablation-resistant coating / ablation performance / degradation model / grey system theory

Cite this article

Download Citations
YU Qian, WANG Yalan, JIANG Zeyong, WANG Yu. Effect of Marine Atmosphere on the Ablation Performance of a Certain Ablation-resistant Coating and Carbon Fiber Laminate and Its Degradation Model[J]. Equipment Environmental Engineering. 2025, 22(11): 97-103 https://doi.org/10.7643/ issn.1672-9242.2025.11.010

References

[1] ZHANG Q, CHEN S, LIU Y, et al.Recent Advances in Ablative Composites for Aerospace Thermal Protection Systems[J]. Composites Part A: Applied Science and Manufacturing, 2024, 23(4): 176-187.
[2] SMITH J A, WILSON K L, ANDERSON R E.Environmental Degradation Mechanisms of Carbon Fiber Reinforced Composites in Marine Atmospheres: A Comprehensive Review[J]. Progress in Materials Science, 2024, 35(5): 138-151.
[3] 刘成臣, 王浩伟, 鲁国富, 等. 复合材料在海洋大气环境中的加速环境谱及当量化[J]. 腐蚀与防护, 2014, 35(7): 692-696.
LIU C C, WANG H W, LU G F, et al.Accelerated Corrosion Environment Spectrum and Equivalent Relation of Composite Materials in Ocean Atmospheric Environment[J]. Corrosion & Protection, 2014, 35(7): 692-696.
[4] 张巍, 马磊, 王国鹏, 等. 一种舰船甲板用热防护涂层的结构: CN205601268U[P].2016-09-28.
ZHANG W, MA L, WANG G P, et al. The Structure of a Thermal Protective Coating for Ship Decks: CN201620122827.4[P].2025-09-28.
[5] PAVLOVSKII V A.Heat Resistant Coatings on High-Temperature Metals[J]. Protection of Metals, 2004, 40(4): 358-361.
[6] 张巍, 马磊, 王国鹏, 等. 火箭发射台用热防护涂层材料的应用研究[J]. 表面技术, 2017, 46(2): 144-148.
ZHANG W, MA L, WANG G P, et al.Application of Heat-Resistant Coating Materials for Rocket Launching Pad Use[J]. Surface Technology, 2017, 46(2): 144-148.
[7] 李金龙, 黄广奇. 火箭发动机续航喷管隔热涂层研究[J]. 弹箭与制导学报, 2008, 28(6): 152-154.
LI J L, HUANG G Q.Study about Heatproof Coat Process of Nozzle on Sustain Rocket Motor[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(6): 152-154.
[8] 宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 271-280.
SONG R K, ZHANG M S, DAI Z, et al.Preparation and Properties of Multi-Functional Composite Integrated with Heat-Shielding and Radar-Absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 271-280.
[9] 杜玉章, 王澳澳, 黄晨光, 等. 树脂及其复合材料在导弹中的失效机理[J]. 装备环境工程, 2023, 20(10): 30-38.
DU Y Z, WANG A A, HUANG C G, et al.Resin and Resin-Based Composites in Missile and Failure Mechanisms[J]. Equipment Environmental Engineering, 2023, 20(10): 30-38.
[10] 罗九林, 张其勇, 郭金茂, 等. 两栖装甲装备腐蚀规律探讨[J]. 车辆与动力技术, 2005(1): 52-57.
LUO J L, ZHANG Q Y, GUO J M, et al.Discussion on Corrosion Law of Amphibious Armored Equipment[J]. Vehicle & Power Technology, 2005(1): 52-57.
[11] 肇研, 余启勇, 董麒, 等. 中国海洋工程复合材料的发展现状与思考[J]. 新材料产业, 2013(11): 26-30.
ZHAO Y, YU Q Y, DONG Q, et al.Development Status and Thinking of Marine Engineering Composite Materials in China[J]. Advanced Materials Industry, 2013(11): 26-30.
[12] 琚印超, 刘小勇, 王琴, 等. 超高温复相陶瓷基复合材料烧蚀行为研究[J]. 无机材料学报, 2022, 37(1): 86-92.
JU Y C, LIU X Y, WANG Q, et al.Ablation Behavior of Ultra-High Temperature Composite Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2022, 37(1): 86-92.
[13] SHENOI R A, 李华东, 张焱冰, 等. 船舶与海洋复合材料结构物工程应用技术[M]. 北京: 科学出版社, 2018: 141-159.
SHENOI R A, LI H D, Zhang Y B, et al.Application Technology of Ship and Ocean Composite Structure Engineering[M]. Beijing: Science Press, 2018: 141-159.
[14] 丁康康, 刘少通, 郭为民, 等. 聚乙烯青岛海洋大气环境腐蚀老化预测研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1070-1074.
DING K K, LIU S T, GUO W M, et al.Prediction for Corrosion Aging of Polyethylene in Marine Atmospheric Environment of Qingdao[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(6): 1070-1074.
[15] 陈跃良, 王安东, 卞贵学, 等. 海洋环境下G827/3234复合材料老化机制及当量加速关系[J]. 复合材料学报, 2018, 35(12): 3304-3312.
CHEN Y L, WANG A D, BIAN G X, et al.Aging Mechanism and Equivalent Acceleration Relationship of G827/ 3234 Composite in the Marine Environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3304-3312.
[16] 李玥, 叶林, 赵晓文. 碳纤维增强环氧树脂复合材料盐雾腐蚀行为及其老化分子机制[J]. 高分子材料科学与工程, 2023, 39(5): 91-97.
LI Y, YE L, ZHAO X W.Salt-Spray Corrosion Behavior and Aging Molecular Mechanism of Carbon Fiber Reinforced Epoxy Resin Composites[J]. Polymer Materials Science & Engineering, 2023, 39(5): 91-97.
[17] 杨美华. 海洋环境下碳纤维环氧复合材料加速老化试验研究[D]. 沈阳: 沈阳航空航天大学, 2011.
YANG M H.Experimental Study on Accelerated Aging of Carbon Fiber Epoxy Composites in Marine Environment[D]. Shenyang: Shenyang Aerospace University, 2011.
[18] LIU X, ZHANG Y, WANG H, et al.Molecular Dynamics Simulation of Water Diffusion in Carbon Fiber/Epoxy Interfaces under Marine Conditions[J]. Composites Science and Technology, 2024, 18(3): 241-257.
[19] WANG T, CHEN L, ZHOU M, et al.In-situ Monitoring of Damage Evolution in Marine Composites Using Synchrotron X-Ray Tomography[J]. Composites Part B: Engineering, 2023, 26(5): 262-278.
[20] 赵伟娜. 复杂热-力载荷下CFRP层合板的失效行为及破坏机理研究[D]. 北京: 中国科学院大学, 2018.
ZHAO W N.Failure Behaviors and Mechanisms of CFRP Laminates Subjected to Combined Thermal and Mechanical Loadings[D]. Beijing: University of Chinese Academy of Sciences, 2018.
[21] 王雅雷. C/C复合材料HfC抗烧蚀涂层的制备、结构及性能研究[D]. 长沙: 中南大学, 2012.
WANG Y L.Study on preparation, Structure and Properties of HfC Anti-Ablation Coating for C/C Composites[D]. Changsha: Central South University, 2012.
[22] 梁彩凤, 候文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, 25(1): 1-6.
LIANG C F, HOU W T.Sixteen-year Atmospheric Corrosion Exposure Study of Steels[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(1): 1-6.
[23] 尹文阔, 李峰, 赵文彬. 输电线路钢结构杆塔涂层腐蚀寿命灰色预测模型及应用[J]. 水电能源科学, 2019, 37(4): 163-166.
YIN W K, LI F, ZHAO W B.Gray Prediction Model of Corrosion Life of Coatings of Steel Tower for Transmission Line and Its Application[J]. Water Resources and Power, 2019, 37(4): 163-166.
[24] 康春涛, 贡力, 王忠慧, 等. 利用灰色残差GM(1, 1)-Markov模型预测水工混凝土的劣化[J]. 水利水运工程学报, 2021(1): 95-103.
KANG C T, GONG L, WANG Z H, et al.Prediction of Hydraulic Concrete Degradation Based on Gray Residual GM(1, 1)-Markov Model[J]. Hydro-Science and Engineering, 2021(1): 95-103.
[25] 徐存东, 黄嵩, 刘子金, 等. 盐冻作用下混凝土力学性能研究及灰色预测[J]. 混凝土与水泥制品, 2021(5): 6-10.
XU C D, HUANG S, LIU Z J, et al.Mechanical Property Research and Grey Prediction of Concrete under Salt Freezing[J]. China Concrete and Cement Products, 2021(5): 6-10.
[26] 刘思峰. 灰色系统理论及其应用[M]. 9版. 北京: 科学出版社, 2021.
LIU S F.Grey System Theory and Its Application[M]. 9th ed. Beijing: Science Press, 2021.
PDF(975 KB)

Accesses

Citation

Detail

Sections
Recommended

/